Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add filters

Language
Year range
1.
medrxiv; 2024.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2024.01.18.24301504

ABSTRACT

South America suffered large SARS-CoV-2 epidemics between 2020 and 2022 caused by multiple variants of interest and concern, some causing substantial morbidity and mortality. However, their transmission dynamics are poorly characterised. The epidemic situation in Chile enables us to investigate differences in the distribution and spread of variants Alpha, Gamma, Lambda, Mu and Delta. Chile implemented non-pharmaceutical interventions and an integrated genomic and epidemiological surveillance system that included airport and community surveillance to track SARS-CoV-2 variants. Here we combine viral genomic data and anonymised human mobility data from mobile phones to characterise the routes of importation of different variants into Chile, the relative contributions of airport-based importations to viral diversity versus land border crossings and test the impact of the mobility network on the diffusion of viral lineages within the country. We find that Alpha, Lambda and Mu were identified in Chile via airport surveillance six, four and five weeks ahead of their detection via community surveillance, respectively. Further, some variants that originated in South America were imported into Chile via land rather than international air travel, most notably Gamma. Different variants exhibited similar trends of viral dissemination throughout the country following their importation, and we show that the mobility network predicts the time of arrival of imported lineages to different Chilean comunas. Higher stringency of local NPIs was also associated with fewer domestic viral importations. Our results show how genomic surveillance combined with high resolution mobility data can help predict the multi-scale geographic expansion of emerging infectious diseases. Significance statementGlobal preparedness for pandemic threats requires an understanding of the global variations of spatiotemporal transmission dynamics. Regional differences are important because the local context sets the conditions for the unfolding of local epidemics, which in turn affect transmission dynamics at a broader scale. Knowledge gaps from the SARS-CoV-2 pandemic remain for regions like South America, where distinct sets of viral variants emerged and spread from late 2020 onwards, and where changes in human behaviour resulted in epidemics which differed from those observed in other regions. Our interdisciplinary analysis of the SARS-CoV-2 epidemic in Chile provides insights into the spatiotemporal trends of viral diffusion in the region which shed light on the drivers that can influence future epidemic waves and pandemics.


Subject(s)
Communicable Diseases, Emerging
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.14.21251708

ABSTRACT

Facing B.1.1.7 variant, social distancing was strengthened in France in January 2021. Using a 2-strain mathematical model calibrated on genomic surveillance, we estimated that curfew measures allowed hospitalizations to plateau, by decreasing transmission of the historical strain while B.1.1.7 continued to grow. School holidays appear to have further slowed down progression in February. Without progressively strengthened social distancing, a rapid surge of hospitalizations is expected, despite the foreseen increase in vaccination rhythm.

3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.10.20171744

ABSTRACT

A novel testing policy was implemented in May in France to systematically screen potential COVID-19 infections and suppress local outbreaks while lifting lockdown restrictions. 20,736 virologically-confirmed cases were reported in mainland France from May 13, 2020 (week 20, end of lockdown) to June 28 (week 26). Accounting for missing data and the delay from symptom onset to confirmation test, this corresponds to 7,258 [95% CI 7,160-7,336] cases with symptom onset during this period, a likely underestimation of the real number. Using age-stratified transmission models parameterized to behavioral data and calibrated to regional hospital admissions, we estimated that 69,115 [58,072-77,449] COVID-19 symptomatic cases occurred, suggesting that 9 out of 10 cases with symptoms were not ascertained. Median detection rate increased from 7% [6-9]% to 31% [28-35]% over time, with regional estimates varying from 11% (Grand Est) to 78% (Normandy) by the end of June. Healthcare-seeking behavior in COVID-19 suspect cases remained low (31%) throughout the period. Model projections for the incidence of symptomatic cases (4.5 [3.9-5.0] per 100,000) were compatible with estimates integrating participatory and virological surveillance data, assuming all suspect cases consulted. Encouraging healthcare-seeking behavior and awareness in suspect cases is critical to improve detection. Substantially more aggressive and efficient testing with easier access is required to act as a pandemic-fighting tool. These elements should be considered in light of the currently observed resurgence of cases in France and other European countries.


Subject(s)
COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.29.20097097

ABSTRACT

On March 17, 2020, French authorities implemented a nationwide lockdown to respond to COVID-19 epidemic emergency and curb the surge of patients requiring critical care, similarly to other countries. Evaluating the impact of lockdown on population mobility is important to help characterize the changes in social dynamics that affected viral diffusion. Using travel flows reconstructed from mobile phone trajectories, we measured how lockdown altered mobility patterns at both local and country scales. Lockdown caused a 65% reduction in countrywide number of displacements, and was particularly effective in reducing work-related short-range mobility, especially during rush hours, and recreational long-range trips. Anomalous increases in long-range movements, localized in both time and space, emerged even before lockdown announcement. Mobility drops were unevenly distributed across regions. They were strongly associated with active population, workers employed in sectors highly impacted by lockdown, and number of hospitalizations per region, and moderately associated with socio-economic level of the region. Major cities largely shrank their pattern of connectivity, reducing it mainly to short-range commuting, despite the persistence of some long-range trips. Our findings indicate that lockdown was very effective in reducing population mobility across scales. Caution should be taken in the timing of policy announcements and implementation. Individual response to policy announcements may generate unexpected anomalous behaviors increasing the risk of geographical diffusion. On the other hand, risk awareness may be beneficial in further decreasing mobility in largely affected regions. Our findings help predicting how and where restrictions will be the most effective in reducing the mobility and mixing of the population, thus aiding tuning recommendations in the upcoming weeks, when phasing out lockdown.


Subject(s)
COVID-19
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.08.20095521

ABSTRACT

As several countries around the world are planning exit strategies to progressively lift the rigid social restrictions implemented with lockdown, different options are being chosen regarding the closure or reopening of schools. We evaluate the expected impact of reopening schools in lIe-de-France region after the withdrawal of lockdown currently scheduled for May 11, 2020. We explore several scenarios of partial, progressive, or full school reopening, coupled with moderate social distancing interventions and large-scale tracing, testing, and isolation. Accounting for current uncertainty on the role of children in COVID-19 epidemic, we test different hypotheses on children's transmissibility distinguishing between younger children (pre-school and primary school age) and adolescents (middle and high school age). Reopening schools after lifting lockdown will likely lead to an increase in the number of COVID-19 cases in the following 2 months, even with lower transmissibility of children, yet protocols exist that would allow maintaining the epidemic under control without saturating the healthcare system. With pre-schools and primary schools in session starting May 11, ICU occupation would reach at most 72% [55,83]% (95% probability ranges) of a 1,500-bed capacity (here foreseen as the routine capacity restored in the region post-first wave) if no other school level reopens before summer or if middle and high schools reopen one month later through a progressive protocol (increasing attendance week by week). Full attendance of adolescents at school starting in June would overwhelm the ICU system (138% [118,159]% occupation). Reopening all schools on May 11 would likely lead to a second wave similar to the one recently experienced, except if maximum attendance is limited to 50% for both younger children and adolescents. Based on the estimated situation on May 11, no substantial difference in the epidemic risk is predicted between progressive and prompt reopening of pre-schools and primary schools, thus allowing full attendance of younger children mostly in need of resuming learning and development. Reopening would require however large-scale trace and testing to promptly isolate cases, in addition to moderate social distancing interventions. Full attendance in middle and high schools is instead not recommended. Findings are consistent across different assumptions on the relative transmissibility of younger children and for small increase of the reproductive number possibly due to decreasing compliance to lockdown.


Subject(s)
COVID-19 , Phobic Disorders , Occupational Diseases
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.13.20063933

ABSTRACT

BackgroundMore than half of the global population is under strict forms of social distancing. Estimating the expected impact of lockdown and exit strategies is critical to inform decision makers on the management of the COVID-19 health crisis. MethodsWe use a stochastic age-structured transmission model integrating data on age profile and social contacts in Ile-de-France to (i) assess the epidemic in the region, (ii) evaluate the impact of lockdown, and (iii) propose possible exit strategies and estimate their effectiveness. The model is calibrated to hospital admission data before lockdown. Interventions are modeled by reconstructing the associated changes in the contact matrices and informed by mobility reductions during lockdown evaluated from mobile phone data. Different types and durations of social distancing are simulated, including progressive and targeted strategies, with large-scale testing. ResultsWe estimate the reproductive number at 3.18 [3.09, 3.24] (95% confidence interval) prior to lockdown and at 0.68 [0.66, 0.69] during lockdown, thanks to an 81% reduction of the average number of contacts. Model predictions capture the disease dynamics during lockdown, showing the epidemic curve reaching ICU system capacity, largely strengthened during the emergency, and slowly decreasing. Results suggest that physical contacts outside households were largely avoided during lockdown. Lifting the lockdown with no exit strategy would lead to a second wave overwhelming the healthcare system, if conditions return to normal. Extensive case-finding and isolation are required for social distancing strategies to gradually relax lockdown constraints. ConclusionsAs France experiences the first wave of COVID-19 pandemic in lockdown, intensive forms of social distancing are required in the upcoming months due to the currently low population immunity. Extensive case-finding and isolation would allow the partial release of the socio-economic pressure caused by extreme measures, while avoiding healthcare demand exceeding capacity. Response planning needs to urgently prioritize the logistics and capacity for these interventions.


Subject(s)
COVID-19
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.02.24.20027326

ABSTRACT

288 cases have been confirmed out of China from January 3 to February 13, 2020. We collected and synthesized all available information on these cases from official sources and media. We analyzed importations that were successfully isolated and those leading to onward transmission. We modeled their number over time, in relation to the origin of travel (Hubei province, other Chinese provinces, other countries) and interventions. We characterized importations timeline to assess the rapidity of isolation, and epidemiologically linked clusters to estimate the rate of detection. We found a rapid exponential growth of importations from Hubei, combined with a slower growth from the other areas. We predicted a rebound of importations from South East Asia in the upcoming weeks. Time from travel to detection has considerably decreased since the first importation, however 6 cases out of 10 were estimated to go undetected. Countries outside China should be prepared for the possible emergence of several undetected clusters of chains of local transmissions.


Subject(s)
COVID-19
8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.02.05.20020792

ABSTRACT

The novel coronavirus (2019-nCoV) epidemic has spread to 23 countries from China. Local cycles of transmission already occurred in 7 countries following case importation. No African country has reported cases yet. The management and control of 2019-nCoV introductions heavily relies on the public health capacity of a country. Here we evaluate the preparedness and vulnerability of African countries against their risk of importation of 2019-nCoV. We used data on air travel volumes departing from airports in the infected provinces in China and directed to Africa to estimate the risk of introduction per country. We determined the countries capacity to detect and respond to cases with two indicators: preparedness, using the WHO International Health Regulation Monitoring and Evaluation Framework; and vulnerability, with the Infectious Disease Vulnerability Index. Countries were clustered according to the Chinese regions contributing the most to their risk. Findings: Countries at the highest importation risk (Egypt, Algeria, Republic of South Africa) have moderate to high capacity to respond to outbreaks. Countries at moderate risk (Nigeria, Ethiopia, Sudan, Angola, Tanzania, Ghana, Kenya) have variable capacity and high vulnerability. Three clusters of countries are identified that share the same exposure to the risk originating from the provinces of Guangdong, Fujian, and Beijing, respectively. Interpretation: Several countries in Africa are stepping up their preparedness to detect and cope with 2019-nCoV importations. Resources and intensified surveillance and capacity capacity should be urgently prioritized towards countries at moderate risk that may be ill-prepared to face the importation and to limit onward transmission.

SELECTION OF CITATIONS
SEARCH DETAIL